[张贴报告]MRI to CT synthesis using contrastive learning

MRI to CT synthesis using contrastive learning
编号:51 稿件编号:62 访问权限:仅限参会人 更新:2021-10-30 17:37:08 浏览:1138次 张贴报告

报告开始:2021年11月13日 10:15 (Asia/Shanghai)

报告时间:5min

所在会议:[Pos] Poster » [Pos] Poster Session

视频 无权播放 演示文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Compared with CT, MRI enables more accurate delineation of target and organs-at-risk. But unlike CT, MRI images is not related with electron density for radiotherapy planning. The purpose of this paper is to generate pseudo CT for radiotherapy planning from MRI using deep learning method. Twenty-nine brain cancer patients with planning CT and diagnostic MRI were selected, of which 23 were used for training and 6 for testing. We use a new neural network based on contrast learning, called CUT. Meanwhile, we change the residual block to nine dense blocks and add a structural similarity to the loss function of the generator, the latter network is called denseCUT. We  compare  Hounsfield Unit (HU) discrepancies between pseudo-CT and original  CT  images.  The mean absolute (MAE) errors were 72.0±6.9 HU,72.5±8.0 HU and 65.7±8.0 HU for the cycleGAN, CUT and denseCUT, respectively. Meanwhile, the structure similarity index (SSIM) were 0.91±0.01, 0.91±0.01 and 0.93±0.01, the peak signal-to-noise ratio (PSNR) were 28.5±0.7 dB, 28.5±0.7 dB and 29.4±0.8 dB, respectively. Experimental results show that the proposed denseCUT network is more accurate,  robust,  and  efficient  for  predicting  synthetic  CT  from MR images for MRI-only radiotherapy.
关键字
MRI, contrastive learning, pseudo CT
报告人
江涛 王
中国科学技术大学

稿件作者
江涛 王 中国科学技术大学
新红 吴 中国科学技术大学
潇 姜 中国科学技术大学
磊 朱 中国科学技术大学
发表评论
验证码 看不清楚,更换一张
全部评论

倒计时

  • 00

  • 00

  • 00

  • 00

重要日期

摘要提交日期:

2021/08/31

2021/10/25

全文投稿日期:  

2021/09/15

2021/10/25

录取通知日期: 

2021/09/30

2021/11/01

会议日期:   2021-11-12-2021-11-14

联系我们

杨巾英 13675518597
智德波 15056085235
高嵩 13121880288
曹乐 15910809908
会议邮箱: icmipe2021@ustc.edu.cn