[张贴报告]A Geometry Information Enhanced Unet for Tumor Segmentation

A Geometry Information Enhanced Unet for Tumor Segmentation
编号:55 稿件编号:18 访问权限:仅限参会人 更新:2021-11-09 22:51:09 浏览:750次 张贴报告

报告开始:2021年11月13日 10:00 (Asia/Shanghai)

报告时间:5min

所在会议:[Pos] Poster » [Pos] Poster Session

视频 无权播放 演示文件 附属文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Currently in clinical practice, tumor segmentation contributes to diagnosis and determination of radiotherapy area, leading to higher efficiency. In order to offer doctors help in lesion analysis and measurement, segmenting tumors from medical images is investigated in this paper. We propose a geometry information enhanced Unet to solve the problem of edge perception in medical images. In this network, we devise a method of extracting differential geometry information at the input of Unet, which makes full use of the tissue edge information of images to improve the segmentation accuracy of the network. This network makes the edge of tumors clearer by using Jacobian determinant and Laplace operator. Experiments on BraTS2018 dataset are performed to demonstrate that our network has superior performance to the baseline. And we apply our method to the clinical liver tumor CT data to explore practicality of our model in other tumor types or other medical image modality.
关键字
medical image, differential geometry, Unet, tumor segmentation
报告人
Haonan Hu
Tsinghua University

稿件作者
Haonan Hu Tsinghua University
Xiangwei Peng Tsinghua University
Qianxi Yang Tsinghua University
Guangxin Li Beijing Tsinghua Changgung Hospital
Xing Wang Beijing Tsinghua Changgung Hospital
Gong Li Beijing Tsinghua Changgung Hospital
Jirang Sun Sanbo Brain Hospital of Capital Medical University
Kehong Yuan Tsinghua University
发表评论
验证码 看不清楚,更换一张
全部评论

倒计时

  • 00

  • 00

  • 00

  • 00

重要日期

摘要提交日期:

2021/08/31

2021/10/25

全文投稿日期:  

2021/09/15

2021/10/25

录取通知日期: 

2021/09/30

2021/11/01

会议日期:   2021-11-12-2021-11-14

联系我们

杨巾英 13675518597
智德波 15056085235
高嵩 13121880288
曹乐 15910809908
会议邮箱: icmipe2021@ustc.edu.cn