[张贴报告]A Cascaded 3D Neural Network For Liver Tumor Segmentation

A Cascaded 3D Neural Network For Liver Tumor Segmentation
编号:59 稿件编号:15 访问权限:仅限参会人 更新:2021-10-30 18:35:39 浏览:699次 张贴报告

报告开始:暂无开始时间 (Asia/Shanghai)

报告时间:暂无持续时间

所在会议:[暂无会议] » [暂无会议段]

暂无文件

摘要
The automated segmentation of liver tumors plays an important role in the diagnosis and treatment of liver cancer. As most of the computed tomography (CT) images are 3D structures, we design a 3D-based liver tumor segmentation model based on the UNet architecture. This model introduces the attention mechanism and dynamic convolution method, which effectively improves the feature extraction ability. In the training process, transfer learning is used to transfer the information learned in the liver segmentation task to the tumor segmentation task, which effectively improves the fitting ability of the model. The Dice coefficients of the liver and tumor segmentation results using this model are 94.9% and 53.2%, respectively. Compared with the basic network framework, the segmentation performance can be improved by 4.4% on the tumor segmentation task on average.
关键字
dynamic convolution,liver tumor segmentation,3D UNet,deep learning
报告人
Yunhai Qiu
Jilin University

稿件作者
Yunhai Qiu Jilin University
Yun Pei Jilin University
Xiuying Li Jilin University
Shuxu Guo Jilin University
Xueyan Li Jilin University
发表评论
验证码 看不清楚,更换一张
全部评论

倒计时

  • 00

  • 00

  • 00

  • 00

重要日期

摘要提交日期:

2021/08/31

2021/10/25

全文投稿日期:  

2021/09/15

2021/10/25

录取通知日期: 

2021/09/30

2021/11/01

会议日期:   2021-11-12-2021-11-14

联系我们

杨巾英 13675518597
智德波 15056085235
高嵩 13121880288
曹乐 15910809908
会议邮箱: icmipe2021@ustc.edu.cn