[张贴报告]SMIR: A Transformer-Based Model for MRI super-resolution reconstruction

SMIR: A Transformer-Based Model for MRI super-resolution reconstruction
编号:91 稿件编号:85 访问权限:仅限参会人 更新:2021-10-30 22:03:44 浏览:1159次 张贴报告

报告开始:2021年11月13日 09:20 (Asia/Shanghai)

报告时间:5min

所在会议:[Pos] Poster » [Pos] Poster Session

视频 无权播放 演示文件 附属文件

提示:该报告下的文件权限为仅限参会人,您尚未登录,暂时无法查看。

摘要
Down-sampling magnetic resonance imaging super-resolution reconstruction is one of the main problems in the field of accelerating magnetic resonance imaging research. The current method with better results is the traditional method of compressed sensing, but the solution requires iteration, which consumes a lot of time and only solves the reconstruction for a single image. At present, the more advanced image restoration methods are based on convolutional neural networks, but few people have tried to apply Transformer to the field of medical image reconstruction and have shown relatively good results. In this article, we propose a magnetic resonance imaging reconstruction model SMIR based on Swin Transformers, namely SMIR. SMIR consists of two modules: a multi-level feature extraction module and a reconstruction module. The model combines frequency domain and spatial domain losses to better reconstruct image details. We compared this model with some traditional image processing methods and advanced convolutional neural networks image restoration methods. The experimental results show that our method achieves the best results.
 
关键字
Transformers,Magnetic resonance imaging (MRI),Deep learning,Super-resolution Reconstruction
报告人
超 严
北京理工大学

稿件作者
超 严 北京理工大学
根 石 北京理工大学计算机学院
正良 吴 北京理工大学
发表评论
验证码 看不清楚,更换一张
全部评论

倒计时

  • 00

  • 00

  • 00

  • 00

重要日期

摘要提交日期:

2021/08/31

2021/10/25

全文投稿日期:  

2021/09/15

2021/10/25

录取通知日期: 

2021/09/30

2021/11/01

会议日期:   2021-11-12-2021-11-14

联系我们

杨巾英 13675518597
智德波 15056085235
高嵩 13121880288
曹乐 15910809908
会议邮箱: icmipe2021@ustc.edu.cn