[Oral Presentation]An Automatic Method for Brain Tumors Segmentation Based on Deep Convolutional Neural Network

An Automatic Method for Brain Tumors Segmentation Based on Deep Convolutional Neural Network
ID:66 Submission ID:38 View Protection:ATTENDEE Updated Time:2021-11-08 09:25:08 Hits:1008 Oral Presentation

Start Time:2021-11-13 16:15 (Asia/Shanghai)

Duration:15min

Session:[PS1] Plenary Session 1 » [AI1] Workshop on AI

No files

Abstract
[Purpose] Accurate outline of tumor targets is critical to a high quality radiotherapy plan. Manual segmentation is of great workload and has a strong artificial subjectivity. Using deep learning method to assist automatically segmenting of tumor target is the penetration and application of artificial intelligence in medicine. 
[Methods] A 6-layer model of deep Convolution Neural Network (CNN) has been constructed by taking advantage of different types of layers for brain tumor segmentation. This model is a 6 layer CNN model (6-CNN) composed of three convolution layers, two pool layers and one full connection layer. To obtain enough samples for 6-CNN model training, a patch-based technology has been adopted. That is to successively extract a local area from the whole image as a patch. And the center pixel value is taken as the pixel value of the whole patch. Similarly, the label of the center pixel is also taken as the label of the whole patch. Thus the 6-CNN model transforms the brain tumor image segmentation into patch classification based on the excellent classification characteristics of deep convolution neural network. The model combines the local features of patch, the information extracted from shallow network and the global features to predict the category label of the central pixel of patch. 
[Results] The model is validated on BRATS 2015 dataset and results show that the segmentation accuracy can be up to Dice Similarity Coefficient (DSC) 90%±4%.
[Conclusions] An automatic deep CNN segmentation model for brain tumors has been constructed based on MRI image patches, which is expected to assist or even substitute the manual segmentation of brain tumors. 
Keywords
Accurately radiotherapy,Brain Tumor Segmentation,Deep Learning,Convolutional Neural Network
Speaker
辉 林
合肥工业大学

Submission Author
辉 林 合肥工业大学
Comment submit
Verification code Change another
All comments

Countdown

  • 00

    Days

  • 00

    Hours

  • 00

    Minutes

  • 00

    Seconds

Important Dates

Abstract submission date:

2021-08-31

2021-10-25

Full paper submission date:

2021-09-15

2021-10-25

Notification of acceptance date: 

2021-09-30

2021-11-01

Conference date: 2021-11-12~2021-11-14

 

Contact Us

Jinying Yang +86 13675518597
Debo Zhi +86 15056085235
Song Gao +86 13121880288
Le Cao +86 15910809908