[口头报告]Application of Deep-Learning Based Monte Carlo Denoising for Fast Radiation Treatment Dose Calculations

Application of Deep-Learning Based Monte Carlo Denoising for Fast Radiation Treatment Dose Calculations
编号:104 稿件编号:75 访问权限:仅限参会人 更新:2021-10-30 22:37:56 浏览:941次 口头报告

报告开始:2021年11月14日 15:00 (Asia/Shanghai)

报告时间:15min

所在会议:[PS1] Plenary Session 1 » [US1] Workshop on Ultra Sound

暂无文件

摘要
Cancer is a primary cause of morbidity and mortality worldwide. The radiotherapy plays a more and more important role in cancer treatment. In the radiotherapy, the dose distribution maps in patient need to be calculated and evaluated for the purpose of killing tumor and protecting healthy tissue. Monte Carlo (MC) radiation transport calculation is able to account for all aspects of radiological physics within 3D heterogeneous media such as the human body and generate the dose distribution maps accurately. However, an MC calculation for doses in radiotherapy usually takes a great mass of time to achieve acceptable statistical uncertainty, impeding the MC methods from wider clinic applications. Here we introduce a convolutional neural network (CNN), termed as Monte Carlo Denoising Net (MCDNet), to achieve the acceleration of the MC dose calculations in radiotherapy, which is trained to directly predict the high-photon (noise-free) dose maps from the low-photon (noise-much) dose maps. Thirty patients with postoperative rectal cancer who accepted intensity-modulated radiation therapy (IMRT) were enrolled in this study. 3D Gamma Index Passing Rate (GIPR) is used to evaluate the performance of predicted dose maps. The experimental results demonstrate that the MCDNet can improve the GIPR of dose maps of 1×107 photons over that of 1×108 photons, yielding over 10× speed-up in terms of photon numbers used in the MC simulations of IMRT. It is of great potential to investigate the performance of this method on the other tumor sites and treatment modalities.
关键字
Radiotherapy,Monte Carlo simulation,deep neural network
报告人
昭 彭
中国科学技术大学

稿件作者
昭 彭 中国科学技术大学
洪明 单 复旦大学
解平 周 中国科学技术大学第一附属医院
曦 裴 中国科学技术大学核医学物理研究所;安徽慧软科技有限公司
爱东 吴 中国科学技术大学第一附属医院
榭 徐 中国科学技术大学核医学物理研究所;中国科学技术大学附属第一医院放疗科;中国科学技术大学核科学技术学院
发表评论
验证码 看不清楚,更换一张
全部评论

倒计时

  • 00

  • 00

  • 00

  • 00

重要日期

摘要提交日期:

2021/08/31

2021/10/25

全文投稿日期:  

2021/09/15

2021/10/25

录取通知日期: 

2021/09/30

2021/11/01

会议日期:   2021-11-12-2021-11-14

联系我们

杨巾英 13675518597
智德波 15056085235
高嵩 13121880288
曹乐 15910809908
会议邮箱: icmipe2021@ustc.edu.cn